# RESYNTE

A new circular economy concept from textile waste towards chemical and textile industries feedstock

dr. Mojca Poberžnik, IOS, Ltd.. Slovenia

Co-coordinator & Technical Manager: **Prof. dr. Aleksandra Lobnik,** UMARI, IOS, Ltd.. Slovenia



#### Introduction





- 75 mio. tons of textile are used/produced worldwide
- a few % of the overall textile waste (low-valued) flow is recycled
- currently ~ 60 mio. tons/year of textiles sent to landfills or burned



# Project vision A new value chain in the circular economy concept

- □ Protecting the environment & raising social awareness and responsibility → introduction of the circular economy concept is an important decision at the EU level
- □ Project goal is to create the circular economy concept → symbiosis between the textile and chemical industry
- □ Aim: usage of the innovative recycling concept for production of secondary raw materials for the chemical industry
- ☐ Textile waste becomes a source for the textile and chemical industries







#### **Process input**

- Waste textiles raw material of low value for recycling in existing recycling processes (disposal, incineration without energy recovery).
- New concept processing of raw textile wastes and mixtures (Protein, CELL, PET in PA fibres) into secondary raw materials for the chemical industry.

quality

**□** 95% of the weight of waste textiles











#### **Process outcomes**

■ Secondary raw materials for the chemical industry

PROTEIN extraction

• Fillers, adhesives for wooden pannels

CELLULOSE extraction and glucose production

- Glucose
- Bio-ethanol

PET depolymerization

- Terephthalic acid
- Ethylene glycol

PA depolymerization

Monomers











#### Organization of project work - Consortium

- □ 20 partners from 10 EU countries,
  - 3 from Slovenia
- ☐ All segments of newly established

#### value chain:

- waste collectors;
- end-users of secondary raw materials;
- academic, expert and consulting organizations;
  - stakeholders at the highest EU level.





#### Organization of project work

#### Considering and demonstrating the whole value chain starting from:

- 1. Preparation of **strategies and scenarios** for the economically successful synergy of the textile and chemical industries,
- 2. Renovation of the concepts of collecting textile waste (improving public awareness),
- 3. Improving the **sorting and pre-treatment** of textile waste,
- 4. Development and optimization of the **chemical and biotechnological transformation** process of **natural** and **synthetic** textile **fibres** into intermediates of raw materials for the chemical industry as well as handling of **liquid and solid residues** of the process,
- 5. Development of industrial applications using raw materials from textile waste,
- 6. Process planning and techno-economic analysis,
- 7. Demonstration of a comprehensive concept at industrial scale,
- 8. Environmental and economic assessment of scenarios and verification of the business model,
  - Exploitation, dissemination, communication, standardization and training.





and innovation programme

# Recycling processes: mechanical, enzymatic, chemical





# Recycling processes: mechanical, enzymatic, chemical





# **Material pretreatment**





Two-screw extruder

Material after extrusion



#### **Decolourization**





### **Proces demonstration – pilot plants**





Pilot plant (30 t/year) for cellulose and protein fibres, installed in France





#### **Protein fibers**





Solubilized protein fibers



Precipitating protein fibers



Precipitated proteins





#### **Cellulosic fibres**







Bioreactors for enzymatic degradation



#### **Cellulosic fibers**







Without predecolourization



Pre-decolourized waste





#### **PET fibers**





PET waste



TA monomer





# **Waste streams - Liquid**



**AOP** pilot plant





Co-funded by the European and innovation programme







#### **Waste streams - Solids**







#### **Benefits from RESYNTEX:**



- Non-wearable textile waste can become a valuable source for new chemical feedstock
- Reducing environmental impact



Improve collection approaches & increase public awareness & improve social involvement with the issue of textile waste



 Improving standards for efficient industrial symbioses with new buisness models in circular economy





#### **Benefits from RESYNTEX:**



- It integrates various stakeholders into circular economy
- demonstration of an ambitious theoretic concept in reality (30 t/y pilot plant)



Uses innovative recycling & industrial symbiosis



Complete value chains from textile wastes & chemical feedstocks



Global benefits beyond EU







#### Acknowledge

RESYNTEX project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement 641942.



info@resyntex.eu www.resyntex.eu@RESYNTEX