

European Union European Regional Development Fund

Project Appraisal

Arjan van Binsbergen Delft University of Technology Department of Transport & Planning a.j.vanbinsbergen@tudelft.nl

7 September, 2021

Effect modelling

Appraisal approaches

Are measure packages effective (do they work) and efficient (value for money)?

Appraisal methods

Monetary approaches

- financial analysis / Cost-Benefit analysis
- cost-effectiveness, cost-utility, total cost analysis
- societal cost benefit analysis

Non-monetary approaches

- Multi Criteria Analysis
- Multi-Actor Multi Criteria Analysis

Appraisal approaches - sCBA

Monetary approaches

 all positive and negative effects are expressed in *monetary units*

- future costs and benefits are *discounted*
- in a societal cost-benefit analysis non-market effects are monetized
- result expressed in 'net present value' (ideally > 0) or 'benefit-cost ratio' (ideally > 1)
- widely used, often formalized, a lot of experience, (seemingly) clear result
- does not normally take into account 'distribution effects' and differences in value perceptions

Appraisal approaches - sCBA

define alternative options (measure packages)

determine & value effects of measure packages (traffic model, effects models and monetisation)

compare advantages and disadvantages of measure packages

Appraisal approaches - sCBA

CliMob

Interreg Europe

Appraisal approaches - MCA

Non-monetary approach – MCA, MAMCA

- all (positive or negative) effects are represented in their native units
- the results are normalised and then weighted – their respective importance is determined
- the sum of the normalised weighted score determines the preference order of alternatives
- weighting can be done with different weighting sets, so representing multiple views (multiple actors)
- method is not standardised and not widely used in formal decision making procedures yet

Appraisal approaches - MCA

Multiple weighting sets

Source: screenshots from Straightsol Evaluation Framework Animation (https://youtu.be/NsxrTjWt-_g)

Appraisal approaches

(s)CBA

- established method
- often used
- formalised in some countries
- considerations: distribution effects, controversial monetising methods, utility theory basis

MCA / MAMCA

- approach helps to get insight in different viewpoints
- not widely used and no standardised approach
- considerations: difficult to establish weighting sets

Appraisal Approaches in 2050CliMobCity

Note:

- sCBA & MCA are 'compensatory' methods a specific disadvantageous effect can be compensated by another very advantageous effect and so still result in a 'good' project
- In 2050CliMobCity the aim is to reduce CO₂eq to a *certain level* or the lowest as possible level
- A package of measures can have a positive sCBA or MCA result, but still *not* comply with the CO₂eq objective!

Therefore: (if we want to do it the right way...)

- <u>first</u>, a check must be made if the measure package (alternatives) reduces CO₂eq emissions sufficiently
- <u>then</u> evaluate only the successful packages in a sCBA or MCA

Effects: value of time (VoT, VTTS)

Value of Time / Value of Travel Time Loss

- traditionally, main benefit of transport system investments (infra, services), via travel time reductions
- transport-economic theory: VTTS captures all direct economic effects of investments

Note:

 not only current travellers, but also additional / new travellers will profit from the travel time reductions, although benefits will decrease with increasing demand

Effects: emissions to the air

Monetary value of emissions (emission reduction)

- 1. Calculate emission effects, related to:
 - Fuel mix
 - Engine characteristics / emission factors*
- 2. Monetary value per emission type
 - Amount of emission (reduced) x monetary value, for all emission separately

Note: monetisation includes the costs of the effects of these emissions on health, acidification etc.

Effects: emissions to the air

Monetary valuation of emissions (the Netherlands)

€ ₂₀₁₅ /kg emission	compound	lower (for sCBA)	central (for LCA)	upper (for sCBA)
CO ₂ *	carbon dioxide	€ 0,014	€ 0,057	€ 0,057
CFC ₁₁ *	chlorofluorocarbons	€ 99,6	€ 313	€ 336
(PM 2,5)	ultrafine particles	€56,8	€79,5	€122
(PM 10)	particulate matter	€ 31,8	€ 44,6	€ 69,1
NOx	nitrogen oxides	€ 24,1	€ 34,7	€ 53,7
SO ₂	sulphur dioxide	€ 17,7	€ 24,9	€ 38,7
NH ₃	ammonia	€ 19,7	€ 30,5	€ 48,8
(NMVOS)	volatile organic compounds	€ 1,61	€ 2,1	€ 3,15
CO	carbon monoxide	€ 0,0736	€ 0,0958	€ 0,152
CH ₄ *	methane	€ 0,448	€ 1,75	€ 1,77

* the value for greenhouse gas emissions includes VAT

and increases by 3.5% per annum relative to the indicated 2015 values

Source: CE Delft, 2018 "Environmental Prices Handbook 2017 – Methods and numbers for valuation of environmental impacts

Effects: safety, noise, hindrance

Other traffic effects include:

- traffic safety:
 - estimated on basis of transport mode, traffic situation;
 - monetised on basis of value of statistical life
- noise:
 - estimated on basis of (rather complex) models
 - monetised on basis of property values
- physical and visual hindrance:
 - detailed analysis of local setting
 - monetised on basis of property values, travel cost method

European Union European Regional Development Fund

Thank you!

Questions welcome

Project smedia