

Life cycle instruments for sustainable textiles

Bruxelles – 6th June 2023 Samuele Abagnato – PhD student in Environmental Engineering

Let me introduce myself

1. Who am !?

- I am first-year-PhD student in Environmental Engineering at Politecnico di Milano
- My research group name is AWARE (Assessment on Waste and Resources)
- My research is focused on the management of textile waste in a life cycle perspective
- In my PhD research I collaborate with Regione Lombardia, so I am interested in the role that public policies can have in the circular economy framework

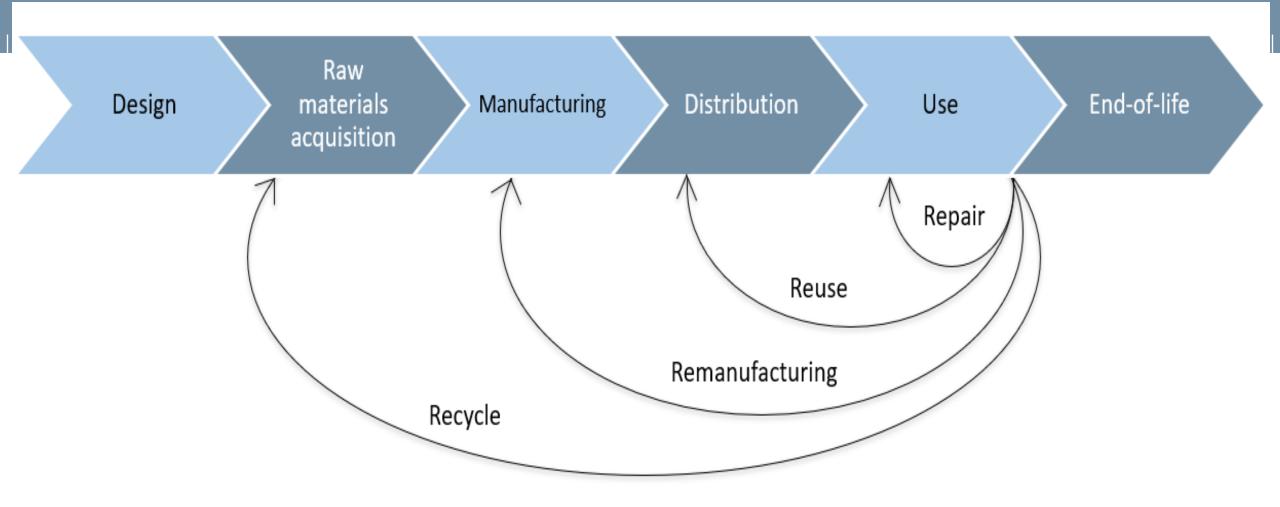
2. My perspective on environmental protection and resource efficiency

We have to find a plurality of solutions that must be integrated in order to approach to sustainability. Life-cycle-thinking can help us to have a holistic approach to problems.

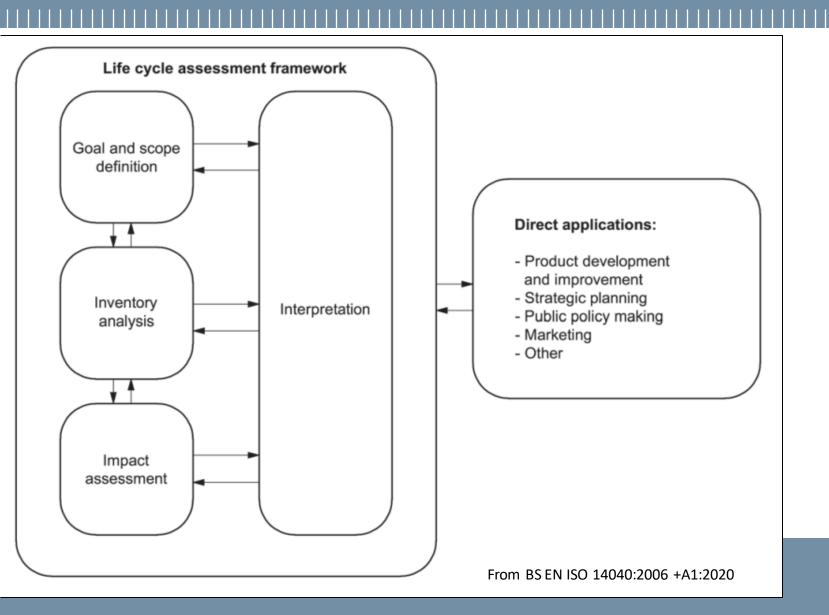
Table of contents

What is life cycle thinking (LCT)?

Textiles: challenges in a world of complexity



How can we apply LCT to textiles?


LCT applied to textile waste management

What is life cycle thinking (LCT)?

Sustainability: environmental, social and economic point of view

Life cycle assessment (LCA)

- Standardised methodology: ISO 14040, ISO 14044
- Systems of indicators: different impacts categories to avoid burden shifting
- Software and databases.
- Data collection from different levels: primary data, data from literature studies, data from databases and estimated data

Textiles: challenges in a world of complexity

Global supply chain and difficulty in the traceability of the products

Environmental and social impacts of the textile industry

Fast fashion

Challenges for textile waste management: high variety of fibres and different qualities of discarded textiles

How can we apply LCT to textiles?

Review: 20 papers about LCA on textiles and textile waste management

Goal and scope of the publications	N° of papers found in the review
Comparative LCA of recycled textile products with products made from virgin materials	5
LCA of recycled fibres	1
Comparative LCA of reusable garments with disposable ones	2
Impact assessment of the use phase of textile products	2
Impact assessment of the whole textile sector of a country	1
Impacts assessment of reuse strategies for textiles	2
Impact assessment of a particular recycling process	2
LCA of the textile waste management system of a country	5

How can we apply LCT to textiles?

Article

Environmental Consequences of Closing the Textile Loop—Life Cycle Assessment of a Circular Polyester Jacket

LCA on a product

Gregor Braun * D, Claudia Som D, Mélanie Schmutz and Roland Hischier

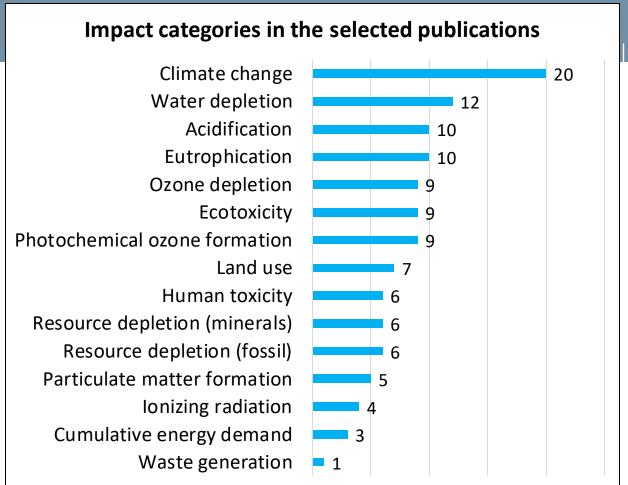
LCA on a specific life cycle stage

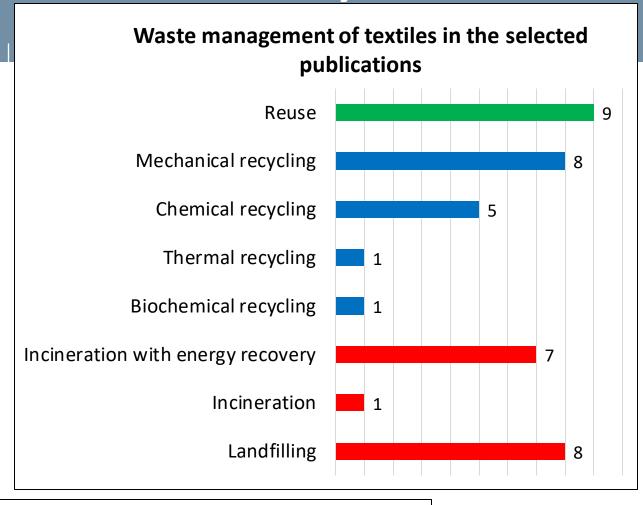
LCA about different business models

Reducing environmental impacts from garments through best practice garment use and care, using the example of a Merino wool sweater

Stephen G. Wiedemann¹ · Leo Biggs¹ · Quan V. Nguyen¹ · Simon J. Clarke¹ · Kirsi Laitala² · Ingun G. Klepp²

Life cycle assessment of clothing libraries: can collaborative consumption reduce the environmental impact of fast fashion?


Bahareh Zamani ^a, Gustav Sandin ^{b, *}, Greg M. Peters ^{a, c}


LCA about waste management system

Environmental assessment of end-of-life textiles in Denmark

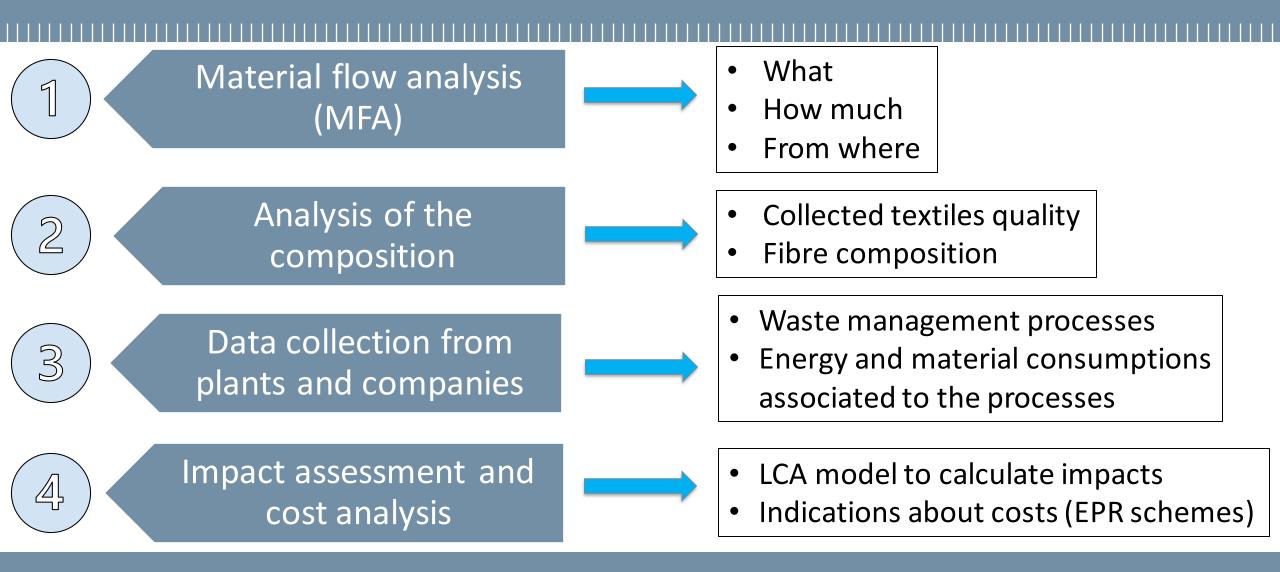
Athina Koligkionia*, Keshav Parajuly, Birgitte Liholt Sørensen, Ciprian Cimpan

Some results from the literature analysis

- LCA studies should cover an high number of impact categories to avoid burden shifting.
- In a waste management integrated system all the operations should be considered.
- The composition of the textiles highly affect their fate as a waste.

LCT applied to textiles waste management

Waste management operation	Effects on environmental impacts	Options	What to consider in LCA studies
Reuse	It is usually the best way to decrease environmental impacts of textiles	 Reuse between multiusers (sharing platforms) Reuse after waste collection and sorting 	 Transport, collection, sorting Longer lifespan when reusable vs disposable products are compared Avoided impacts
Recycling	Products with recycled content have usually lower impacts than virgin products (with some exceptions)	 Fibre-to-fibre recycling Open loop recycling 	 Chemicals, water, energy and other input to recycling processes Avoided impacts from virgin production
Final disposal	Incineration and landfilling give a little contribution to the total impacts but they are the worst	Incineration with energy recoveryIncineration without	 Impacts related to the processes (ex: emissions) Impacts avoided from energy


energy recovery

Landfilling

and methane production

than reuse and recycling

LCT applied to textiles waste management

Post-consumer textile waste in EU

Difference between **pre-consumer** and **post-consumer** textile waste

Consumption of textile products in EU

12.3 kg/capita in EU-27 in 2018 (*Circular economy perspectives in the EU Textile sector*, JRC, 2021)

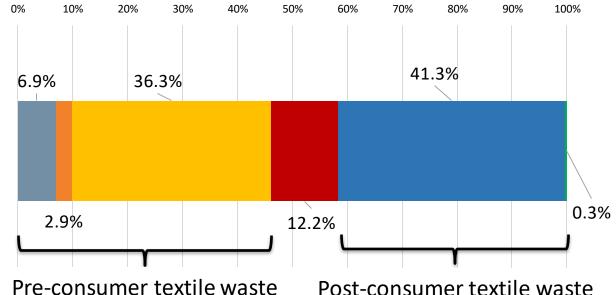
Post-consumer textile waste

About **11 kg/capita** of textiles are discarded every year in the EU (*EU Strategy for Sustainable and Circular Textiles*, 2022). **1.7 - 2.1 million t of used textiles are collected annually** in EU. The majority of the remaining 3.3 - 3.7 million t are thought to be discarded in mixed household waste (JRC, 2021).

% of separated collection in EU

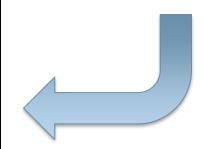
On average 38% of textiles placed on the market are separately collected. The collected % varies between different countries and there is a lack of harmonisation in the accounting methods used.

Textiles in mixed waste

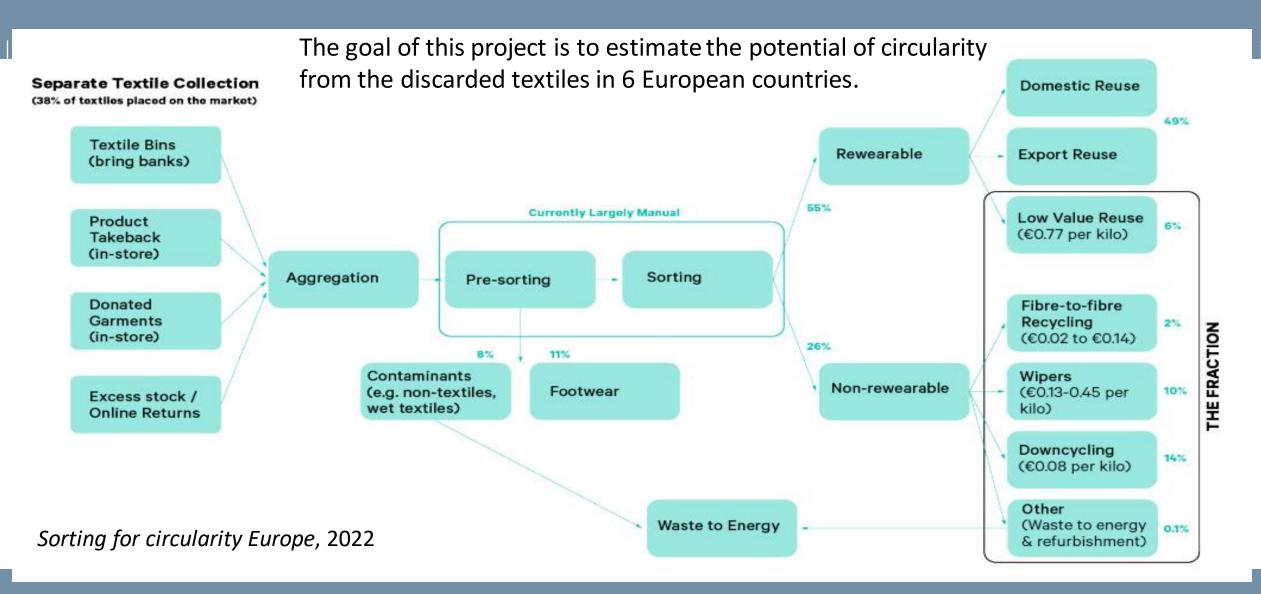

Flanders (BE): 5.5 kg/capita in 1996, 4.0 kg/capita in 2001 and 7.09 kg/capita in 2014.

Netherlands: textiles (and footwear) were 1.8% of household residual waste in 1980 and 5.9% in 2018 (JRC, 2021).

What kind of textiles waste? How much? From where?


Textile waste in Lombardy in 2021

- Waste from composite materials (impregnated fibres, elastomers, plastomers): EER 040209
- Waste from raw textile fibres: EER 040221
- Waste from processed textile fibres: EER 040222
- Textile waste from mechanical waste treatment: EER 191208
- Textile waste from clothing separately collected: EER 200110
- Textile waste separately collected: EER 200111


Analysis on post-consumer textile waste:

- **Source** of the waste: 86% is waste collected by municipalities
- **Extra-regional fluxes**: 14% of waste comes from other italian regions
- **Operators**: 7 operators/plants out of 71 declare to manage the 78% of the total waste
- **Type of operation** on the waste: 65% of the waste is stocked waiting other operations (R13), 30% is addressed to material recovery (R3)
- How much: 4.2 kg/inhabitant in 2021

POLITECNICO MILANO 1863

Examples of MFA with economical evaluations

Used textiles export

- Used textiles export from EU: from 0.55 million tonnes in 2000 to 1.7 million in 2019.
- In 2019, 46% of used textiles ended up in Africa and 41% in Asia (European Environment Agency, EU exports of used textiles in Europe's circular economy, 2023).
- Environmental impacts of reuse and final disposal in countries out of Europe must be taken into account for a correct LCA of textile waste management.

Return to Sender, The Nest

Some LCA results from textile waste management in scientific literature


Same functional unit: the management of 1 t of post-consumer textile waste

Author, year, country	Waste management processes considered	Impact on climate change
Zamani et al., 2014, Sweden	Remanufacturing, cellulose-polyester separation, polyester recycling, incineration with energy recovery	- 10 t CO₂ eq./t waste
Koligkioni et al., 2018, Denmark	Reuse in DK and in Europe, incineration in DK and in Europe, landfill in Europe and in ROW	- 8,6 t CO₂ eq./t waste
Moazzem et al., 2021	Landfill, fibres recycling, recycling for insulation materials, recycling for wipes	There is not an integrated scenario
Espinosa-Perez et al., 2022, Chile	Recycling	- 5,8 t CO₂ eq./t waste
Semba et al., 2020, Japan	Reuse overseas, recycling in wipes, PES fibre recycling, PET chemical recycling, thermal recycling	- 11 t CO₂ eq./t waste

Some LCA results from textile waste management in scientific literature

What are the main variables that con influence LCA studies on textiles?

Tanks for your attention

samuele.abagnato@polimi.it