Bydgoszcz - analysis results

European Union European Regional Development Fund

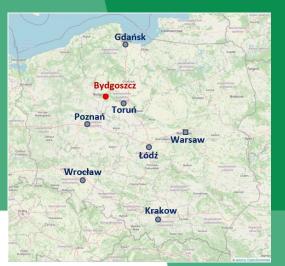
prepared by:

Arkadiusz Drabicki Jacek Chmielewski

Gradiens Sp. z o. o. arkadiusz.drabicki@gradiens.pl

supervised by:

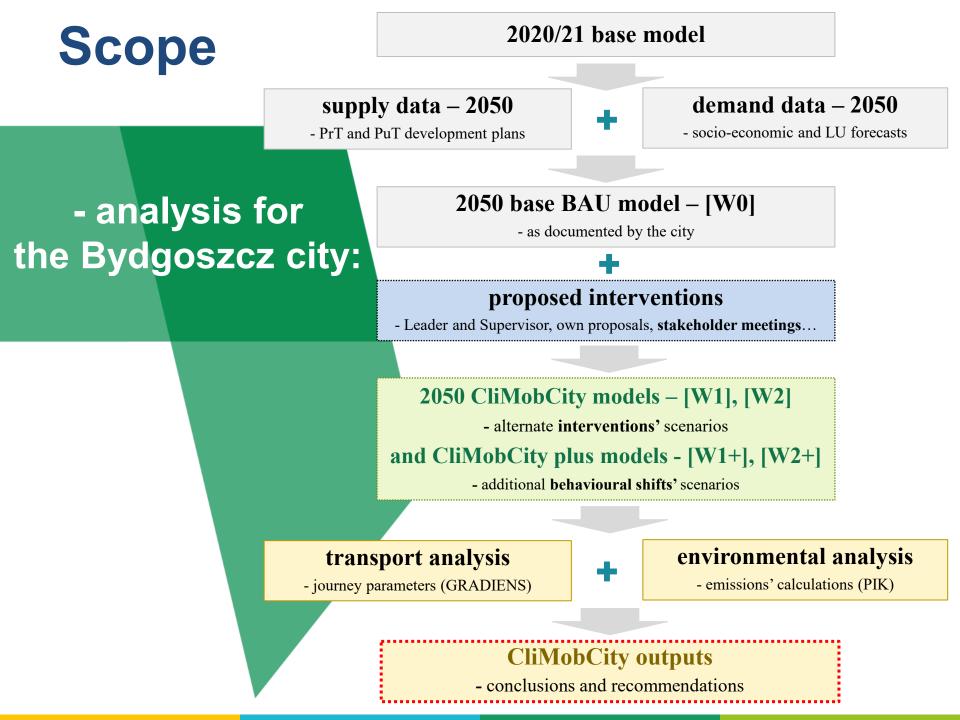
Hanna Lewandowska


City of Bydgoszcz – Energy Management Office

20 June, 2023 - Final Dissemination Event

gradiens

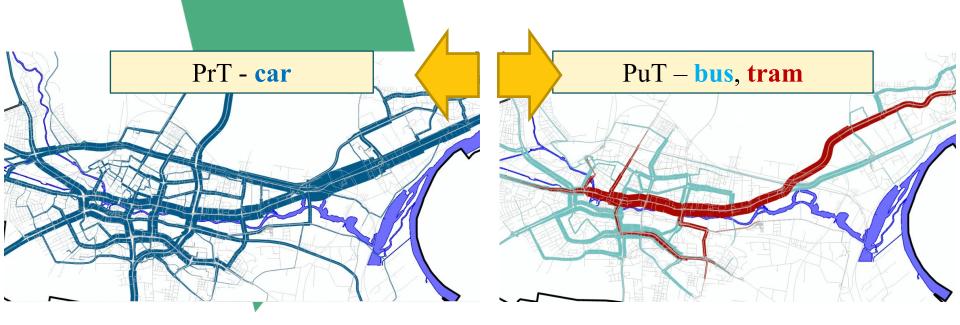
Introduction


Public transport:

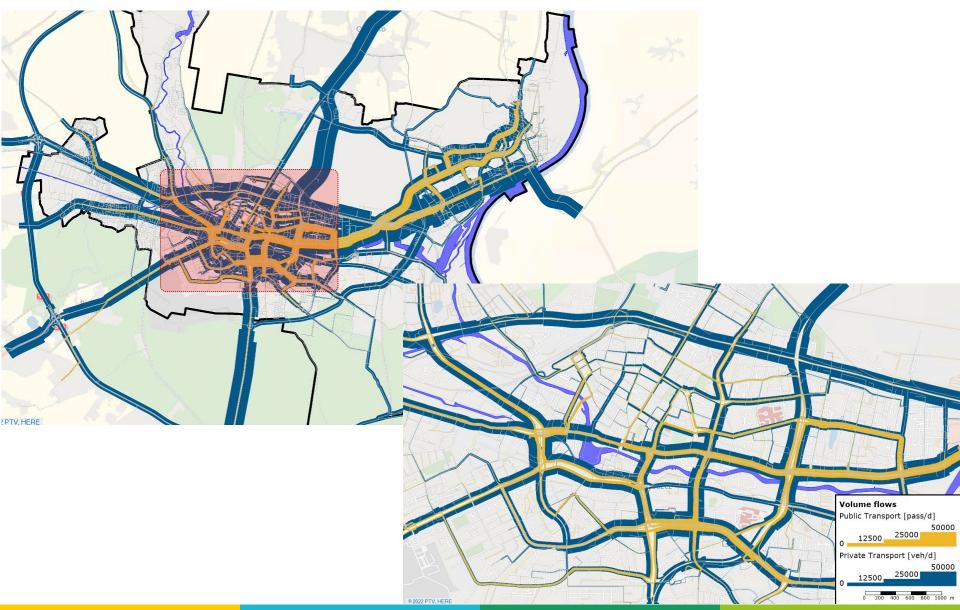
- 11 tram lines
- ~ 48 bus routes
- annual ridership:
 92m passengers
 (2019)

Bydgoszcz: ~ **340k** population ~600k+ in metro (FUA) area

- 9th largest city in Poland



Methodology


Bydgoszcz transport model (in PTV Visum):

- multimodal private & public transport, active modes
- network & demand data
- Iand-use and transport impacts
- outputs numerical, graphical, qualitative...

Results – [W0] baseline flows

BAU [W0] – initial results

Bydgoszcz - scenario:		Modal Share (passenger trips only)				average occupancy	
[values per 24 hrs]		% PrT (car)	% PuT	% Walk	% Cycle	[pass./ veh.]	
base year	2021	50.4%	22.2%	26.2%	1.3%	1.23	
future year - BAU	2050 [W0]	54.3%	21.7%	22.8%	1.2%	1.21	
Dydgo	Network statistics						
Bydgoszcz - scenario:		v_mean [km/h] l_m		ean [km] t_me		an [mins]	
[values per 24 hrs]		PrT	PuT	PrT	PuT	PrT	PuT
base year	2021	49.3	21.4	10.0	4.8	12.2	13.4
future year - BAU	2050 [W0]	50.9	24.2	12.6	6.0	14.8	14.8

BAU outlook:

- rising travel distances due to suburbanisation
- higher travel speeds (road) network improvements
- consequences?

 → longer travel times
 - → rising CO2 emissions

Analysis scenarios

2050 BAU [W0]

reference scenario (business as usual)

Method **→ network model modifications:**

- graph: nodes, links, stops, lines
- parameters: travel speeds, times
- operations' data: timetables
- (+ land-use input data)

2050 CliMobCity [W1]

hard investment expansion

focus: infrastructure policy

- continued suburbanisation
- PT coverage extension
- central-area: clean traffic / pricing zone

2050 CliMobCity [W2]

soft, compact measures

focus: land-use policy

- inner-city reurbanisation
- PT frequency maximisation
- limited road investment
- zero-emission bus fleet, P+R system
- central area: PT and access only

Method → demand model modifications:

- 4-step model mode choice
- travel utility adjustments

2050 CliMobCity [W1+]

hard investment expansion soft, con

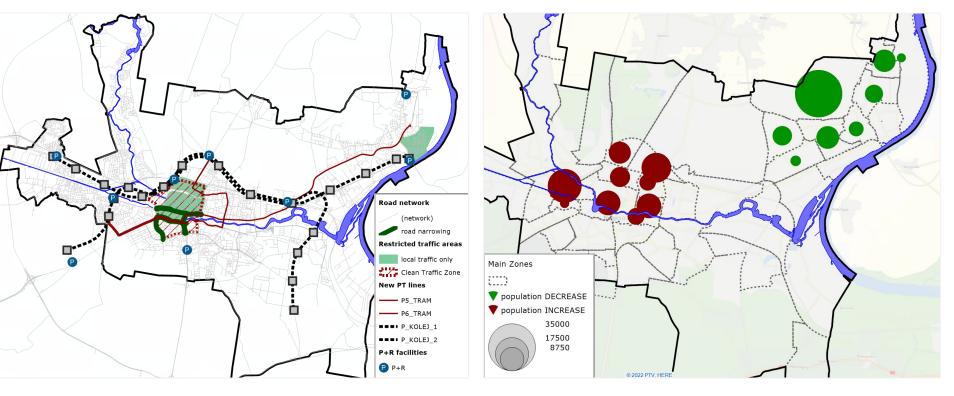
2050 CliMobCity [W2+]

soft, compact measures

focus: travel behaviour policy

- rising attractiveness of non-car travel models
- new modes' adoption: car-sharing, ride-pooling, e-bikes
- positive shifts in travellers' perceptions

Scenario assumptions



[W1] infrastructure policy

- central Bydgoszcz: road narrowing + LEZ
- tram and rail system expansion

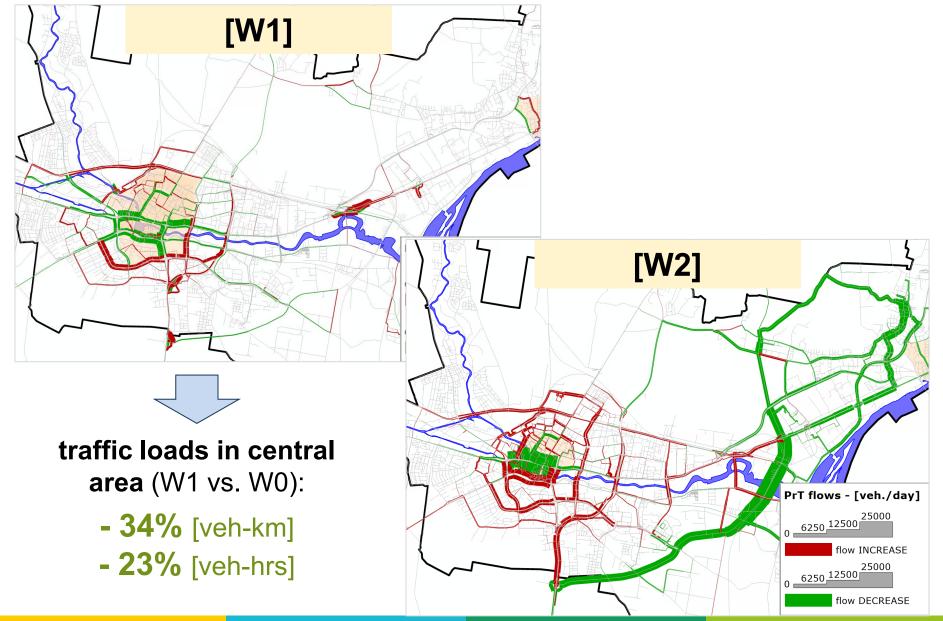
[W2] land-use policy

- reversal of suburbanisation
- existing PT network higher utilisation

(key interventions)

Results – O-D distribution

[W2] 2050


shift towards
 reurbanisation
 (compact-city)

[W0] 2050

➔ sustained suburbanisation

Results – traffic flow changes

2050

Results – global summary

Network parameters		speed [km/h]		distance [km]		time [mins]		network loads [veh-km]
scenario:		PrT	PuT	PrT	PuT	PrT	PuT	PrT
2021 – BAU	[W0]	49.3	21.4	10.0	4.8	12.2	13.4	4.55m
2050 – BAU	[W0]	50.9	24.2	12.6	6.0	14.8	14.8	6.07m
2050 –	[W1]	50.5	27.2	12.5	6.1	14.9	13.4	6.11m
CliMobCity	[W2]	51.3	29.6	12.3	5.7	14.4	11.5	5.80m

- PrT (car) modal share rising from 50% to 54% in the BAU scenario
- [W1] limited positive changes
 - → car traffic loads decrease in the city centre only
 - ➔ network-wide: diminishing gains

• [W2] substantial benefits:

- \rightarrow car usage falls to 51%
- → higher PT ridership up to 40,000 extra [trips/day] (+20%)

Results – travel parameters

[W2] results vs. [W0]:

- modal share
- network loads
- average speed
- average travel time

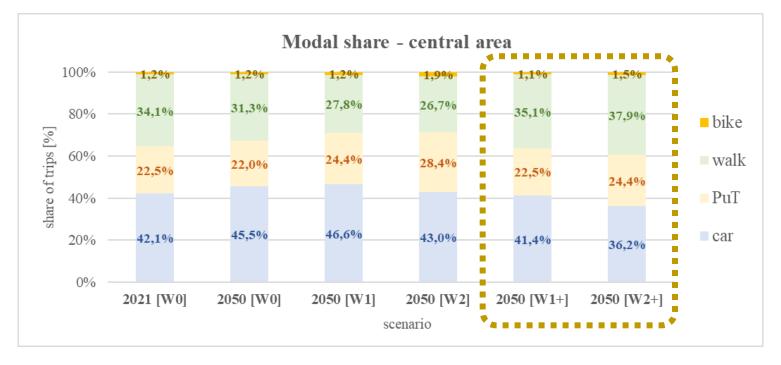
- + 2.0 p.p. for PuT
- 179.8 k [veh-km]
- 3.2 k [veh-hrs]
- 0.5 [kph]
- 0.4 [mins]

Implications?

travel time benefits – conservative estimates:
 3,200 [hrs] * 300 * 4 [EUR/hr] = 3.84m [EUR per year]

and plus climate / safety / ... gains ...? ③

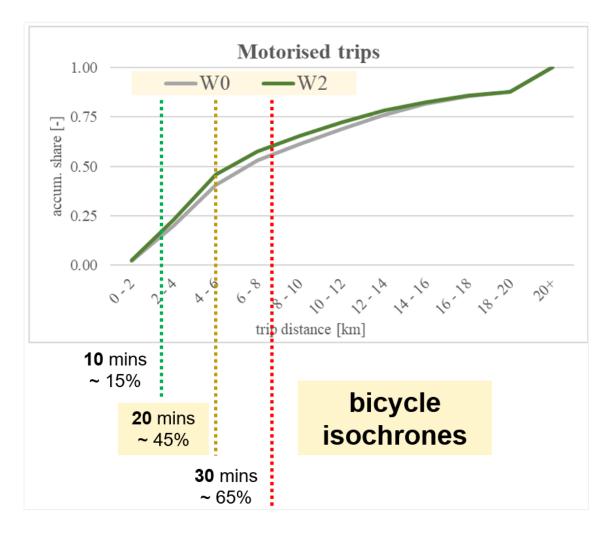
Results – CO2 emissions


C	O2 emissions – road trai	total	Relative changes Δ [%]			
scenario:		zero-emission car fleet share [%]	[tonnes]	vs. 2021	vs. 2050 [W0]	
2021		~ 0%	427,3	n/d		
2050	[W0]		478,1	+ 12%	b.d.	
	[W1]	16% BEV + 7% FCV	383,0	- 10%	- 18%	
	 infrastructure policy 	30% BEV + 13% FCV	376,4	- 12%	- 21%	
	[W2]	16% BEV + 7% FCV	337,1	- 21%	- 29%	
	 – land-use policy 	30% BEV + 13% FCV	328,7	- 23%	- 31%	

source: Gradiens – Visum model; PIK (Potsdam Institute for Climate Impact Research) - EuroCalc model

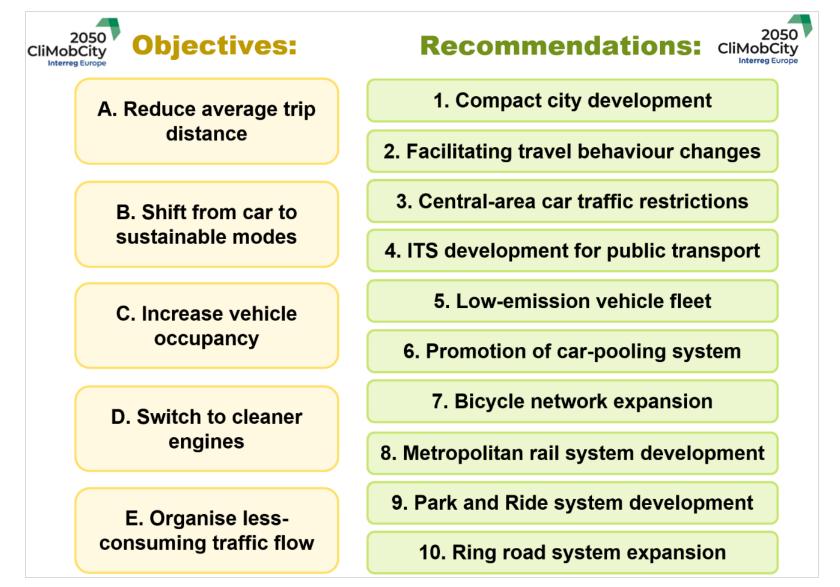
- **[W0] BAU:** rising CO2 emissions wrt. present-day values
- **[W2] vs. [W1] CliMobCity:** extra environmental gains with the inhibition of *urban sprawl* (synergy with other transport inverventions)
- → yet CO2 reductions substantially limited by **energy-mix sources**

Results – plus scenarios



Long-term travel behaviour changes – fostering the [W1] and [W2] benefits:

- additional trip changes: PrT: - 25 000 [veh./d] PuT: + 20 000 [pass./d]
- traffic loads: [veh-km], [veh-hrs]: – 8%



Active modes' potential

CliMobCity - conclusions

European Union **European Regional Development Fund**

Thank you! 🙂 questions, comments, feedback...? gradiens BYD arkadiusz.drabicki@gradiens.pl **Project smedia**

www.gradiens.pl