

Ę

European Union European Regional Development Fund

Reflection on cities' demonstrations

Ekki Kreutzberger

Final Dissemination Event 19-21 June 2023

Step "Reflection in the cities' demonstrations"

Content of the step "Reflection in the cities' demonstrations"

Red thread

- Cities have developed measure packages
- Some more experimental than others
- Some more change of mobility and CO₂e reduction
- But in all cities: the reductions are not sufficient.
- What if exercises (forecasting lever exercises): more modal shift, shorter distances, more shift to post-fossil vehicles.
 Reductions still not sufficient in forecasting
- *What if* exercises (backcasting lever exercises)
- Potential measure content in
- What if lever exercises

What if approach

CO2e reduction aims

- Bydgoszcz: climate neutral in 2050
- Plymouth: climate neutral in 2030
- Thessaloniki: 42% reduction 1990-2030. Since recently: climate neutral in 2030
- Leipzig: climate neutral in 2040. Since recently: climate neutral in 2030

Findings: Mobility and CO₂e reduction

From measures to mobility effects

	Measures	Change car-kms (%). From base year to BAU	Measures	Change car-kms (%). From base year to CliMobCity car- kms (%)
Bydgoszcz	 Road widening and new links New tram infra links and service lines 	+38	W2: • Re-urbanisation • Frequency PT central area • Cancel suburban ring road • Limitation through traffic centre	+31
Plymouth	 PT infra improvements Road junctions, roundabouts and links 	+19	 Bus infra improvements P+R bus Sherford Tavistock rail Hubs and electric charging 	+5 *
Thessaloniki	 New metro Suburban train Active travel infra development 	-18	 Shared electric car nodes (small scale) Public bus electrification 	-18
Leipzig	 Road infra links and widening Regional train infra Tram infra links and services 	-8	 Accelerate electric charging points Hub network with shared vehicles Public bus electrification 	-8

From mobility effects to CO₂e reductions

	Change car-kms (%) from base year to BAU	Change CO ₂ e (%) from base year to BAU *
Bydgoszcz	+38	+1
Plymouth	+19	-5
Thessaloniki	-18	-8
Leipzig	-8	-39

* Share of post-fossil fuel vehicles as in EU Reference scenario.

Take Thessaloniki and Leipzig: how is such difference between reduction car-kms and CO₂e emissions possible?

% post-fossil fuel cars according to the EU reference scenario

Answer: because of difference in electrification etc. of cars (table below) and greening of electricity production. Both affect the still remaining car-kms

	% post-fossil fuel cars
Bydgoszcz 2021	0.2
Bydgoszcz 2050	23
Plymouth 2015	1
Plymouth 2034	18
Thessaloniki 2018	0.2
Thessaloniki 2030	1.5
Leipzig 2015	1
Leipzig 2035	17

From measures to mobility effects

Reduction CO2e emissions			Base year = 2018	
City →	Bydgoszcz	Plymouth	Thessaloniki	Leipzig
Mobility scenario →	W2	UK max	Sh. Electr.	Int. Mob.
\downarrow Techology and energy scenario	CliMobCity	CliMobCity	CliMobCity	CliMobCity
Scenario BAU (EU reference, present energy mix)	1	-5	-8	-39
Scenario 1 (CliMobCity, EU reference, expected future energy mix)	-1	-9	-14	-40
Scenario 2 (CliMobCity, Tech, expected future energy mix)	-6	-24	-15	-49
Scenario 3 (CliMobCity, Tech, green energy mix)	-19	-32	-21	-57
Scenario 4 (= scenario 3, additional modal shift *)	-25	-36	-22	-62
Scenario 5 (= scenario 3, decrease time spent **)	-22	-34	-21	-58
Scenario 6 (= scenario 3, additional electrification ***)	-24	-39	-22	-61
Scenario 7 (= combinations of scenario 3, 4, 5 and 6)	-32	-45	-24	-67
Scenario 8) Backcasting scenario 1: scenario 3, further modal shift ****			-42	
Scenario 9) Backcasting scenario 2: scenario 3, further shift to post-fossil fuel vehicles *****			-54	
Scenario 10) Backcasting scenario 3: further modal shift and shift to post-fossil fuel vehicles ******				-80
* Share: -10%-points LDVs (e.g. cars), +5%-points public transport busses, +5%-points active travel.				
** 10% less time spent, because of less road vehicle-kms and/or more fluent traffic flow.				
*** Share: 10%-points extra shift to post-fossil fuel vehicles.				
**** Thessaloniki: Share: -26 %-points LDV (e.g. cars), -5%-points 2W, +8%-points bus, +8%-points metro, +3	%-points rail, +	-3%-points wa	lk, +9%-points bike	
***** Thessaloniki: Share: + 61% BEV; -15% diesel, -46% gasoline				
****** Leibzig: Share of modes: -25%-points cars and other LDV, +15%-points public transport busses, +10%-p	oints active tra	vel.		
Share of powertrains: +32% post-fossil vehicles (BEV), -20%-points gasoline, -12%-points diesel.				

CO₂e reduction in the CliMobCity measure packages of the 4 cities

	Reduction CO ₂ e (%)	
	min	max
Scenario BAU	1	-39
(EU reference, present energy mix)		
Scenario 1	-1	-40
(CliMobCity, EU reference,		
expected future energy mix)		
Scenario 2	-6	-49
(CliMobCity, Tech, expected future energy mix)		
Scenario 3	-19	-57
(CliMobCity, Tech, green energy mix)		

In Plymouth, Thessaloniki and Leipzig increasing population.

Nominal reductions per capita are about 2-7 %-points higher.

Reduction not sufficient: what now?

Forecasting 'Lever' exercises

Back-casting 'Lever' exercises

CO₂e reduction (Forecasting) lever exercises

	Reductior	n CO ₂ e (%)
	min	max
Scenario 3 (CliMobCity, Tech, green energy mix)	-19	-57
Scenario 4 (= scenario 3, additional modal shift *)	-22	-62
Scenario 5 (= scenario 3, decrease time spent **)	-21	-58
Scenario 6 (= scenario 3, additional electrification ***)	-22	-61
Scenario 7 (= combinations of scenario 3, 4, 5 and 6)	-24	-67

* Share: -10%-points LDVs (e.g. cars), +5%-points public transport busses, +5%-points active travel.

** 10% less time spent, because of less road vehicle-kms and/or more fluent traffic flow.

*** Share: 10%-points extra shift to post-fossil fuel vehicles.

CO₂e reduction (Backcasting) lever exercises

	Redu	iction CO ₂ e (%)
Connerie 2	10	(70)
Scenario 3	-19	
(CliMobCity, Tech, green energy mix)		
Scenario 8) Backcasting Thessaloniki 1	-42	
= Scenario 3 plus further modal shift *		
Scenario 9) Backcasting Thessaloniki 2	-54	Sufficient
= Scenario 3 plus further shift to post-fossil fuel vehicles **		
Scenario 10) Backcasting Leipzig	-80	Sufficient
= Scenario 3 plus further modal shift and shift to post-fossil		
fuel vehicles ***		

- * Thessaloniki: Share: -26 %-points LDV (e.g. cars), -5%-points 2W, +8%-points bus, +8%-points metro, +3%-points rail, +3%-points walk, +9%-points bike.
- ** Thessaloniki: Share: + 61% BEV; -15% diesel, -46% gasoline.
- *** Leibzig: Share of modes: -25%-points cars and other LDV, +15%-points public transport busses, +10%-points active travel AND Share of powertrains: +32% post-fossil vehicles (BEV), -20%-points gasoline, -12%-points diesel.

Which measures for further CO₂e reduction ?

What about ...

novel mobility modes and services: hubs, shared vehicles?

Why not already incorporated in the prediction of mobility changes?

- "Shared e-mobility systems are still in its infancy period in most places".
- "Research on micromobility is still in its nascent stage" (Liao and Correia, 2022).
- And "... there is a lack of a wide academic literature about shared e-scooters" (Badia and Jenelius, 2021).

Sustainability expectations regarding shared cars

- Fewer car kms driven in comparison to private car (this is partly implicitly modal shift) -> less use CO₂e
- Fewer cars needed per driven km -> less CO₂e emitted in car production and recycling
- Less parking demand -> supports compact city layout -> more active travel -> less CO₂e
- More car efficiency: newer models, more circulation
 -> less use CO₂e

Similar with shared micromobility

- Shared electric car use with 150 cars in Thessaloniki reduced the city's car-kms by 1% (CERTH/HIT applying Momentum tools)
- Survey amongst shared car users. Shared car decreases car-kms of users by 15-20% and CO₂e emissions by 13-18% (LCA). Reduction by use (less car-kms plus shift from sustainable modes is only 5-8% (Nijland and Meerkerk, 2018, NL, not city-specific)
- Survey amongst shared car and share bicycle users at 9 new mobility hubs, 9 existing car stations and 7 existing bicycle stations in Würzburg, most in city centre.
 Reduces city's CO₂e emissions by 1% (use) (Pfertner, 2016)

- Survey amongst private e-bike users in south and northern Sweden. Per person reduction of 15-20% CO2e emissions (use). Hiselius and Svensson (2016)
- Shared e-bicycle reduces CO₂e emissions in Paris and Düsseldorf, not in Berlin (LCA) (Krauss et al. 2021)

- Survey amongst private e-bike users in south and northern Sweden. Per person reduction of 15-20% CO2e emissions (use). Hiselius and Svensson (2016)
- Shared e-bicycle reduces CO₂e emissions in Paris and Düsseldorf, not in Berlin (LCA) (Krauss et al. 2021)

Selection of indications about performances: substitution of modes

Shared e-scooter

SHARED E-SCOOTER	Paris	Berlin	Düsseldorf	Stockholm	
From walk	40,3	50,3	49,4	42,0	%
From public transport	35,5	26,4	25,9	38,8	%
From car, motorcycle, moped, e-cooter, bicycle	12,3	14,2	13,1	7,9	%
Taxi and ridehailing	8,9	4,4	5,7	7,6	%
Would not have made the trip	3,1	4,7	5,7	3,7	%
	100,1	100	99,8	100	%

Share	SHARED E-BICYCLE	Paris	Berlin	Düsseldorf	
e-bicycle	From walk	25			%
(Stockholm not	From public transport	38	39	33	%
mentioned)	From car, motorcycle, moped, e-cooter, bicycle	23	26	20	%
	Taxi and ridehailing	11	6	11	%
	Would not have made the trip	4	2	7	%
		100	100	100	%

Selection of indications about performances: substitution of modes

Würzburg: modes of shared car users at mobility stations before implementation of mobility stations

Source: Pfertner (2016)

CliMob

Interreg Europ

Selection of indications about performances: CO₂e impact of modal shift

NL-case:

CO₂e reduction because of shared cars (use only)

	From	То	
Change in car kilometres	-15	-13	%
Change in mode of transport	9	8	%
Change in car ownership	-7	-13	%
Total	-13	-18	%

Source: Nijland and Meerkerk (2018)

Würzburg: CO₂e reduction because of shared cars and bicycles (use and fewer cars [LCA])

More efficient vehicles	ficient vehicles -0,01 %	
Additional car trips	tional car trips 0,05	
Reduction of private car use	-0,97	%
Total reduction	About -1	%

Source: Pfertner (2016)

Selection of indications about performances: space requirement

 1 shared car replaces x private cars: ranging from 1:2 to 1:20 for station-based carsharing and 1:1 to 1:3.6 for freefloating systems

(Bundesverband CarSharing, 2016" according to Pfertner, 2017)

Selection of indications about performances: indicative conclusions

- Shared cars and e-scooters do not support PT, despite of being used for first and last mile
- Shift to shared car reduces road vehicle-kms and CO₂e.
 - Reduction of car-kms
 - Despite of modal shift from sustainable modes to (shared) car
 - In LCA also: less emissions prod./recycle. cars
- Shared micromobility on LCA basis seems to reduce CO₂e, but not necessarily (example e-bicycles in Berlin)

Selection of indications about performances: indicative conclusions

• Reductions CO₂e per passenger OK, but niche market

CO₂e reduction requires: niche -> mainstream configuration. Which scale is this?

 Space saving is a fact.
 Strengthening compact city makes more people walk and cycle. Positive CO₂e effect is not part of reviewed studies.

Which measures for further CO₂e reduction?

- Address freight transport, incl. electrification
- More of the same set of measures
- More new measures

Measures for further CO₂e reduction (reduction of fossil fuel (road) vehicles in this planning period)

- Freight substantial contributor to remaining CO₂e emissions
- Reduce fossil freight-kms in the city
 - Electric vans = quick win
 - Large trucks:
 - Like busses electric?
 - What happens on intercity-network:
 - Catenary? Hydrogen?
 - If catenary: decoupling points at city edge
 - Large scale?
 - If yes more/other decoupling points at city edge

Measures for further CO₂e reduction (reduction of fossil fuel (road) vehicles)

More of the same types of measures

- PT as in Thessaloniki, Leipzig or Bydgoszcz.
- Shared electric cars, shared bicycles, amnestes for private bicycles at mobility hubs. Relevance of PT location for first/last mile
- More effective push pull combinations. Example Limiting development road (Bydgoszcz). More restrictive parking measures
- Accelerate electrification
- Access limitations (Bydgoszcz)
- Active travel infrastructure

=

Measures for further CO₂e reduction (reduction of fossil fuel (road) vehicles)

More of the same types of measures Spatial measures:

- Average distance,
- more active travel,
- more public transport,
- regional commuting

Pricing measures (re)activate?

Awareness raising

More of new types of measures 🗉

- New combinations of push/pull/technological/behavioural measures
- Pricing/taxing measures more effective and inclusive, e.g. income dependant
- Pricing/taxing measures more sustainable, e.g. more effective encouragement of heavy cars
- Sufficient financing and staff for transition making
- UK: reorganise local public transport, its planning and financing

Measures for further CO₂e reduction (reduction of fossil fuel (road) vehicles): willingness to innovate

- Make use of willing potential
 - Check/improve quality of service
 - Awareness and support campaigns
- In project
 - Plymotion
 - Action Thessaloniki
 - Employers' mobility management
 - Leipzig: presentstion Simone

Indications concerning willingness of residents to innovate

- Leipzig (2019) survey:
 - 75% can't imagine life without private car ->
 - Conclusion survey: improve service product.
 - Potential other conclusion: 25% can imagine.
- Würzburg: responses from users, city non-users:
 - "A life without a private car is desirable, but not realistic" (1/4 - 3/4 disagrees).
 - "I don't like sharing items" (< ½ agrees).
 - "Future mobility consists more of using than of owning" (> 1/2 - 3/4 agrees).
 - "I am reluctant to the idea of sharing my private vehicle" (< ¹/₂ - ³/₄ agrees).
- Use this potential: awareness raising, incentives etc.

Never forget, when wanting to develop more effective measure packages to reduce CO₂e emissions of mobility

CO₂e reduction by fewer (road) carbon vehicle-kms will only be achieved if one or more of the following central mobility changes occurs

- Reduce number of trips/capita
- Reduce average travel distance
- Shift to more sustainable modes
- Increase vehicle occupation
- Decrease share of fossil-fuel vehic.
- Reduce vehicle weight
- Smoothen traffic flows

Example measure:

- → Work home
- → Land use
- → Attractive PT
- → Incentives
- → Charging points
- \rightarrow Local ation.
- → Traff. Managem.

Other important ways to reduce CO₂e emissions are

Example measure:

→ Shared cars and other shared vehicles

 Reduce car parking demand: supports compact city
 -> shorter distance
 -> more walking and bicycling

(lies within the impact scope of the project)

Reduce number of cars

 > less CO₂e emissions for
 producing, maintaining and
 recycling cars
 (lise extended of the improvement of the

(lies outside of the impact scope of the project)

→ Shared cars and other shared vehicles

General conclusions from the project

Conclusions regarding climate mitigation perspectives in urban mobility

- Climate neutrality in around 2030 is needed to limit global warming to 1.5° Celsius
- Given the current governance frameworks, it is not possible to achieve climate neutrality for mobility in 2030 (e.g. insufficient financing for more shift to public transport or more shift to post-fossil fuel vehicles and faster greening of electricity production; e.g. inappropriate legal assignment of competences to cities)

Conclusions for climate mitigation policies

- Stick to ambitious climate mitigation aims like climate neutrality in 2030
- Strive for climate neutral mobility as soon as possible
- Conduct strategic city and mobility planning including quantitative projections/checks for the future -> will there be sufficient mobility change and sufficient CO₂e reduction? Achieving climate neutrality for mobility in 2040 can also be a very good result
- Cities should avoid laisser-faire or climate-cynicism in in their city and mobility development planning and other activities

Conclusions for climate mitigation policies of cities

Important flanking policies:

- Awareness raising, information and incentives to mobilise cooperation of residents and organisations
- Awareness raising to regional and national governments directed towards changing governance frameworks in favour of effective climate mitigation
- Carbon capture is not a governance subject on the municipal level. Mobility in cities may be a reason to search for carbon capturing on (inter)national levels

European Union European Regional Development Fund

Thank you!